25 research outputs found

    Field Trials for the Empirical Characterization of the Low Voltage Grid Access Impedance From 35 kHz to 500 kHz

    Get PDF
    The access impedance of low-voltage (LV) power networks is a major factor related to the performance of the narrow-band power line communications (NB-PLCs) and, in a wider sense, to electromagnetic compatibility (EMC) performance. Up to date, there is still a lack of knowledge about the frequency-dependent access impedance for frequencies above 9 kHz and up to 500 kHz, which is the band where the NB-PLC operates. The access impedance affects the transmission of the NB-PLC signal, and it determines the propagation of the non-intentional emissions that may disturb other electrical devices, including malfunctioning or reduced lifetime of equipment. This paper presents the results of field measurements of the LV access impedance up to 500 kHz in different scenarios, with measurement locations close to end users and near transformers. The results provide useful information to analyze the characteristics of the LV access impedance, including variation with frequency, ranges of values for different frequency bands, and analysis of specific phenomena. Moreover, the results reveal a diverse frequency-dependent behavior of the access impedance in different scenarios, depending on the grid topology, the number of end users (that is, number and type of connected loads), and the type of transformation center. Overall, the results of this paper offer a better understanding of the transmission of NB-PLC signals and EMC-related phenomena.The authors would like to thank Iberdrola for the availability and the collaboration of authorized staff for carrying out the field trials

    Measurement campaign on transmit delay diversity for mobile DVB-T/H systems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2010 IEEEThis paper describes the work carried out by Brunel University and Broadreach Systems (UK) to quantify the advantages that can be achieved if Transmit Delay Diversity is applied to systems employing the DVB standard. The techniques investigated can be applied to standard receiver equipment without modification. An extensive and carefully planned field trial was performed during the winter of 2007/2008 in Uxbridge (UK) to validate predictions from theoretical modeling and laboratory simulations. The transmissions were performed in the 730 MHz frequency band with a DVB-T/H transmitter and a mean power of 18.4 dBW. The impact of the transmit antenna separation and the MPE-FEC was also investigated. It is shown that transmit delay diversity significantly improves the quality of reception in fast fading mobile broadcasting application

    Study of unwanted emissions in the CENELEC-A band generated by distributed energy resources and their influence over narrow band power line communications

    Get PDF
    Producción CientíficaDistributed Energy Resources might have a severe influence on Power Line Communications, as they can generate interfering signals and high frequency emissions or supraharmonics that may cause loss of metering and control data. In this paper, the influence of various energy resources on Narrowband Power Line Communications is described and analyzed through several test measurements performed in a real microgrid. Accordingly, the paper describes the effects on smart metering communications through the Medium Access Control (MAC) layer analysis. Results show that the switching frequency of inverters and the presence of battery chargers are remarkable sources of disturbance in low voltage distribution networks. In this sense, the results presented can contribute to efforts towards standardization and normative of emissions at higher frequencies higher, such as CENELEC EN 50160 and IEC/TS 6274

    Field Trials for the Characterization of Non-Intentional Emissions at Low-Voltage Grid in the Frequency Range Assigned to NB-PLC Technologies

    Get PDF
    The paper describes the results of a measurement campaign to characterize the non-intentional emissions (NIE) that are present in the low voltage section of the electrical grid, within the frequency range assigned to narrowband power line communications (NB-PLC), from 20 kHz to 500 kHz. These NIE may severely degrade the quality of the communications and, in some cases, even isolate the transmission devices. For this reason, the identification and characterization of these perturbations are important aspects for the proper performance of the smart grid services based on PLC. The proper characterization of NIE in this frequency range is a key aspect for the selection of efficient configurations to find the best trade-off between data throughput and robustness, or even for the definition of new improved error detection and correction methods. The huge number of types of NIE, together with the wide variety of grid topologies and loads distribution (density and location of homes and industrial facilities) are great challenges that complicate the thorough characterization of NIE. This work contributes with results from field trials in different scenarios, the identification of different types of NIE and the characterization both in time and frequency domains of all the registered disturbances. This contribution will be helpful for a better knowledge of the electrical grid as a transmission medium for PLC and, therefore, for evaluating the appropriateness of different robustness techniques to be applied in the next generation of smart grid services.This work was funded in part by the Basque Government under the grants IT1234-19 and Elkartek KK-2018/00037 and the Spanish Government under the grant RTI2018-099162-B-I00 (MCIU/AEI/FEDER-UE)

    On-field evaluation of the performance of IP-based data transmission over narrowband PLC for smart grid applications

    Get PDF
    [EN] One of the current efforts for the grid modernization is the deployment of Advanced Metering Infrastructure systems. Regarding AMI technologies, NarrowBand PLC is one of the most spread technologies worldwide. While current AMI deployments based on NB-PLC focus on metering applications, this work addresses the operation of IP over NB-PLC for Smart Grid applications. IP is a well-established standard that might become the key enabler for the interoperability amongst numerous applications for the Smart Grid. In this scenario, on-field measurements become essential to test the coexistence of AMI systems and data transmission beyond metering applications. This paper analyses the configurations and parameters that affect the performance of IP over PRIME such as the number of nodes in the subnetwork, switching levels and transport layer protocols, among others. Results show that the topology of the subnetwork plays a key role for the resulting data rates and provide a meaningful contribution towards the implementation of new applications over NB-PLC based on IP data transmission

    Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications

    Get PDF
    Abstract Currently, Advanced Metering Infrastructure (AMI) systems have equipped the low voltage section with a communication system that is being used mainly for metering purposes, but it can be further employed for additional applications related to the Smart Grid (SG) concept. This paper explores the potential applications beyond metering of the available channel in a Power Line Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power Line Communication (NB-PLC) in a real microgrid, which includes an AMI system. A thorough review of potential applications for the SG that might be implemented for this representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering. The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement additional applications such as remote commands or status signals, which entails an added value for deployed AMI systems.This work has been partially funded by the Basque Government (IT.683-13 and ELKARTEK KK-2017/00071

    Characterization of the Potential Effects of EMC Filters for Power Converters on Narrowband Power Line Communications

    Get PDF
    Electromagnetic Compatibility (EMC) filters are one of the main solutions for dealing with the disturbances generated by power inverters. However, they show series/parallel resonances that introduce variations in the impedance seen from the grid. Consequently, in some cases, these filters have low impedances at resonance frequencies, which can affect Narrowband Power Line Communications (NB-PLC) due to notching effects. For that reason, the potential effects of four EMC filters on NB-PLC have been studied. Laboratory trials in a controlled environment have been carried out, in which the attenuation and the Signal-to-Noise Ratio (SNR) thresholds that define the communication’s quality have been studied. The results presented in this paper show that, although the variations of the channel frequency response are not selective enough to degrade the communication thresholds, the attenuation measured when the filter is connected near the receiver might be sufficiently high to be critical for the communications in some situations. Therefore, EMC filters might have a negative impact on NB-PLC that had not been previously considered.This research was funded by the BASQUE GOVERNMENT, grant number IT1234-19 and SPANISH GOVERNMENT, grant number RTI2018-099162-B-I00 (MCIU/AEI/FEDER-UE)

    DVB-T2 Performance in Presence of Multipath Laboratory Tests

    Get PDF
    Abstract-This paper presents the results of laboratory tests carried out to study the performance of DVB-T2 in presence of multipath in fixed reception with rooftop antenna. The typical multipath cause in this scenario is a Single Frequency Network (SFN) reception. A range of relative levels and delays between the main path and one echo are tested to obtain the C/N requirements for each case. DVB-T2 supports a large number of options that can be chosen to optimize the system. Some of those options (Pilot Patterns, Guard Interval Fraction, Rotated Constellations, FFT sizes) are tested to evaluate their performance. The results are compared with the simulation results available in the implementation guidelines for the extreme cases of Gaussian channel (no echo) and 0 dB echo channel (main path and echo at same level). Index Terms-DTV and broadband multimedia systems, Field trials and test results, Channel modeling and simulation, DVB-T2

    A new voltage probe with improved performance at the 10 kHz–500 kHz frequency range for field measurements in LV networks

    Get PDF
    [EN] Voltage measurements in the frequency range from 10 kHz to 500 kHz are used to quantify the level of the Narrow Band Power Line Communication transmitted signals, the noise and the non-intentional conducted emissions generated by the devices connected to the Low Voltage grid. Considering that the voltage levels within this frequency range are very small if compared to measurements below 2 kHz, measuring equipment of higher precision is needed, but existing standards do not currently cover this frequency band. In this paper, a voltage adapter with improved performance at the 10 kHz–500 kHz frequency range for field measurements in LV networks is presented. Moreover, a measurement setup and methodology for the frequency-dependent characterization of this type of voltage adapters is described, which is used to demonstrate the outperformance of the designed probe with respect to four commercial devices.This work has been financially supported in part by the Basque Government (Elkartek program and IT-683-13)

    A comparative study of the field strength prediction methods in the MW band

    Get PDF
    [EN] The recently developed digital radio systems for the MW band require accurate field strength prediction algorithms for coverage estimation. This paper presents a comparison of the estimation accuracy provided by the most relevant field strength prediction methods employed for ground-wave propagation at this band. Moreover, a field strength prediction method recently developed by the authors, has been also considered in the analysis. Empirical values from measurement campaigns carried out in three different broadcasting networks have been used to analyse the accuracy of the prediction methods. The comparison between the predicted and the measured values allows an objective evaluation of the estimation accuracy of each method under different reception conditions. The proposed method provides the most accurate results on field strength predictions, and consequently, it is a suitable method for the coverage estimation of the new digital radio systems
    corecore